استمارة مستخلصات رسائل واكاريح الماجستير والدكتوراء فبي جامعة البصرة

اسم الطالب: أبتهال جاسم محمد اسم المشرف: أ. د. علي جاسم محمد الشهادة: ماجستير الكلية: كلية التربية للعلوم الصرفة القسم: الرياضيات التخصص: نظرية تقريب عنوان الرسالة أو الأطروحة

نظرية التقريب والشبكات العصبية الاصطناعية

ملخص الرسالة أو الأطروحة

College: College of Education for Pure Sciences

for Pure Sciences

Dept: Mathematics Certificate: M. Sc. Name of student: Ibtihal Jassim Mohammad

Name of supervisor: Dr. Ali J. Mohammad Specialization: Approximation Theory

Title of the thesis

Approximation Theory With Artificial Neural Networks

Abstract of the thesis

In this thesis, firstly the researcher introduces a family of neural network operators $B_n(f; \mathbf{x})$ of summation-integral Bernstein type in s-dimensional, which are defined by using some sigmoidal functions $\sigma(x)$. Pointwise and uniform approximation theorems for these operators are given when applied for continuous functions. In addition, the researcher discusses the approximation for these operators $B_n(f; \mathbf{x})$ in L^p -spaces with $1 \le p < \infty$. Secondly, the researcher introduces a family of neural network operators by using the sequence of Bernstein-Taylor's of f, $\tilde{B}_n(f; \mathbf{x})$ activated by the sigmoidal function σ acting on f. The pointwise and uniform approximation theorems for these operators are studied when applied for a given continuous functions. Next, the researcher also discusses the order of approximation by using the absolute moment of order v for these operators to approximate the functions belong to Lipschitz space. Finally, some applications of the sequences of a family of linear positive multivariate neural network operators $B_n(.; \mathbf{x})$, $\tilde{B}_n(.; \mathbf{x})$, $F_n^s(.; \mathbf{x})$ and $K_n(.; \mathbf{x})$ are given, then the results of these sequences are analyzed. The results by graphics of absolute value of the error function for some particular value of n = 10, 20, 30 and for two test functions in 2-dimensional $f(x_1, x_2) = x_1 + x_2$ and $g(x_1, x_2) = \frac{2}{3}\cos(4x_1x_2) + 2\sin(x_1 + x_2)$ by using Matlap software, are described.