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Abstracts of Thesis:

This thesis consists of two parts: In the first part, we give an identity which
can be regarded as a basic result for this part. Inspired by this identity, we
introduce a new operator G(a, b;Dq). The g—exponential operator R(bDq)
defined by Saad and Sukhi [24] can be considered as a special case of the
operator G(a, b;Dq) for a=(). We also introduce a new polynomial
W, (x,y,a,b;q). Setting a=0 in W, (x,y,a,b;q) we get Al-Salam—Carlitz
polynomials U, (x,y,a; q); this means that U, (x,y,a;q) is a special
case of W, (x,y,a,b;q). So all the results for the polynomials
W, (x,y,a,b;q) are extensions for the results of the polynomials

U,(x,y,a;q). We give an operator proof for the generating function and
its extension, the Mehlers formula and its extension, the Rogers formula
and the inverse linearization formula for W, (x,y, a, b; q). We introduce a
solution of a g—difference equation and express the solution in terms of the
operator G(a, b;Dq). By using this method, we verify two operator identities

for the operator G(a, b;Dq) and the generating function for the polynomials

Wn(x,y, Cl,b; q)

In the second part, we give an identity which can be regarded as a basic
result for this part. Inspired by this identity, we introduce a new operator
S(a, b;0). The g—exponential operator T(b6) defined by Abdul Hussein [2]
can be considered as a special case of the operator S(a, b;0) for a=0. We
also introduce a new polynomial Z,(x,y,a,b;q). Setting a=0, b=1 and
exchanging x with y in Z,,(x,y,a, b; q) we get the bivariate Rogers—Szeg o

polynomials h,(x,y|q) defined by Chen et al. [7], this means that




h,.(x,y|q) is a special case of Z,(x,y,a,b;q). So all the results for the
polynomials Z,(x,y,a,b;q) are extensions for the results of the
polynomials h,(x,y|q). We give an operator proof for the generating
function and its extension, the Rogers formula and the inverse linearization
formula for Z,(x,y,a,b;q). We introduce a solution of a qg-difference
equation and expresses the solution in terms of the operator S(a, b;0). By
using this method, we verify an operator identity for the operator S(a, b;0)

and the generating function for Z,,(x, y, a, b; q).




