استمارة مستخلصات رسائل وأطاريح الماجستير والدكتوراه في جامعة البصرة

اسم الطالب: فائز عاجل رشم

اسم المشرف: أ.م.د. حسام لوتي سعد

الشهادة: الماجستير

الكلية :العلوم

القسم: الرياضيات

التخصص: الرياضيات

عنوان الرسالة أو الأطروحة:

المؤثران-q لمتعددتي الحدود-q

ملخص الرسالة أو الأطروحة:

هذه الرسالة تشمل جزأين في الجزء ألأول، نعطي متطابقة تعتبر نتيجة أساسية لهذا الجزء. وهذه الرسالة تشمل جزأين في الجزء ألأول، نعطي $G(a,b;\mathrm{Dq})$. المؤثر $G(a,b;\mathrm{Dq})$ الذي عرّف بالاعتماد على هذه المتطابقة نكون المؤثر $G(a,b;\mathrm{Dq})$. المؤثر $G(a,b;\mathrm{Dq})$ عندما a=0 أيضا نقدم من قبل سعد و صخي [24] يعتبر حالة خاصة من المؤثر $W_n(x,y,a;q)$. متعددة حدود السلام - كارلتز $W_n(x,y,a,b;q)$ هي حاله خاصة من متعدّدة الحدود $W_n(x,y,a,b;q)$ عندما $W_n(x,y,a,b;q)$ نقدم برهان للدالة المولدة وتوسيعها و صيغة ملر وتوسيعها وصيغة روجرز وتوسيعها والصيغة الخطية ومعكوسها لمتعددات الحدود $W_n(x,y,a,b;q)$. نقدم حل لمعادلة الفروقات- $W_n(x,y,a,b;q)$ ونمثل الحالة بصيغة المؤثر $W_n(x,y,a,b;q)$. باستخدام هذه الطريقة حققنا متطابقتين للمؤثر $W_n(x,y,a,b;q)$.

في الجزء الثاني، نعطي متطابقة تعتبر نتيجة اساسية لهذا الجزء. بالاعتماد على هذه المتطابقة نكون المؤثر $S(a,b;\theta)$. $S(a,b;\theta)$ الأسّي $T(b\theta)$ الذي عرّف من قبل عبد الحسين [2] يعتبر حالة خاصة من المؤثر $S(a,b;\theta)$ عندما $S(a,b;\theta)$ عندما $S(a,b;\theta)$ عندما $S(a,b;\theta)$ عندما $S(a,b;\theta)$ عندما عندما $S(a,b;\theta)$ وتبديل $S(a,b;\theta)$ مع $S(a,b;\theta)$ نقدم متعددة حدود روجرز- زيكو الثنائية عرّفت من قبل جن وآخرون $S(a,b;\theta)$ لذلك فان كل نتائج $S(a,b;\theta)$ هي تعميم لنتائج $S(a,b;\theta)$. باستخدام المؤثر $S(a,b;\theta)$ نقدم برهان للدالة المولدة وتوسيعها، صيغة روجرز ومعكوس الصيغة الخطية. نقدم حل لمعادلة الفروقات- $S(a,b;\theta)$ ونمثل الحل بصيغة المؤثر $S(a,b;\theta)$. $S(a,b;\theta)$.

College: Science Name of student: Faiz Agel Reshem

Dept: Mathematics Name of supervisor: Assist. Prof. Dr.

Husam .L. Saad

Specialization: Applied Mathematics Certificate: Master

Title of Thesis:

Two q-Operators for two q-Polynomials

Abstracts of Thesis:

This thesis consists of two parts: In the first part, we give an identity which can be regarded as a basic result for this part. Inspired by this identity, we introduce a new operator G(a, b; Dq). The q-exponential operator R(bDq) defined by Saad and Sukhi [24] can be considered as a special case of the operator G(a, b; Dq) for a=0. We also introduce a new polynomial $W_n(x, y, a, b; q)$. Setting a=0 in $W_n(x, y, a, b; q)$ we get Al-Salam-Carlitz polynomials $U_n(x, y, a; q)$; this means that $U_n(x, y, a; q)$ is a special case of $W_n(x, y, a, b; q)$. So all the results for the polynomials $W_n(x, y, a, b; q)$ are extensions for the results of the polynomials $U_n(x, y, a; q)$. We give an operator proof for the generating function and its extension, the Mehlers formula and its extension, the Rogers formula and the inverse linearization formula for $W_n(x, y, a, b; q)$. We introduce a solution of a q-difference equation and express the solution in terms of the operator G(a, b; Dq). By using this method, we verify two operator identities for the operator G(a, b; Dq) and the generating function for the polynomials $W_n(x, y, a, b; q)$.

In the second part, we give an identity which can be regarded as a basic result for this part. Inspired by this identity, we introduce a new operator $S(a,b;\theta)$. The q-exponential operator $T(b\theta)$ defined by Abdul Hussein [2] can be considered as a special case of the operator $S(a,b;\theta)$ for a=0. We also introduce a new polynomial $Z_n(x,y,a,b;q)$. Setting a=0, b=1 and exchanging x with y in $Z_n(x,y,a,b;q)$ we get the bivariate Rogers-Szeg o polynomials $h_n(x,y|q)$ defined by Chen et al. [7], this means that

 $h_n(x,y|q)$ is a special case of $Z_n(x,y,a,b;q)$. So all the results for the polynomials $Z_n(x,y,a,b;q)$ are extensions for the results of the polynomials $h_n(x,y|q)$. We give an operator proof for the generating function and its extension, the Rogers formula and the inverse linearization formula for $Z_n(x,y,a,b;q)$. We introduce a solution of a q-difference equation and expresses the solution in terms of the operator $S(a,b;\theta)$. By using this method, we verify an operator identity for the operator $S(a,b;\theta)$ and the generating function for $Z_n(x,y,a,b;q)$.